Advances in Systemic siRNA Delivery

Drugs Future. 2009 Sep;34(9):721. doi: 10.1358/dof.2009.034.09.1413267.

Abstract

Sequence-specific gene silencing with small interfering RNA (siRNA) has transformed basic science research, and the efficacy of siRNA therapeutics toward a variety of diseases is now being evaluated in pre-clinical and clinical trials. Despite its potential value, the highly negatively charged siRNA has the classic delivery problem of requiring transport across cell membranes to the cytosol. Consequently, carrier development for siRNA delivery is one of the most important problems to solve before siRNA can achieve widespread clinical use. An assortment of non-viral carriers including liposomes, peptides, polymers, and aptamers are being evaluated for their ability to shepherd siRNA to the target tissue and cross the plasma membrane barrier into the cell. Several promising carriers with low toxicity and increased specificity for disease targets have emerged for siRNA-based therapeutics. This review will discuss non-viral approaches for siRNA therapeutics, with particular focus on synthetic carriers for in vivo systemic delivery of siRNA.