Species differences in pharmacokinetics and pharmacodynamics

Handb Exp Pharmacol. 2010:(199):19-48. doi: 10.1007/978-3-642-10324-7_2.

Abstract

Veterinary medicine faces the unique challenge of having to treat many types of domestic animal species, including mammals, birds, and fishes. Moreover, these species have evolved into genetically unique breeds having certain distinguishable characteristics developed by artificial selection. The main challenge for veterinarians is not to select a drug but to determine, for the selected agent, a rational dosing regimen because the dosage regimen for a drug in a given species may depend on its anatomy, biochemistry, physiology, and behaviour as well as on the nature and causes of the condition requiring treatment. Both between- and within-species differences in drug response can be explained either by variations in drug pharmacokinetics (PK) or drug pharmacodynamics (PD), the magnitude of which varies from drug to drug. This chapter highlights selected aspects of species differences in PK and PD and considers underlying physiological and patho-physiological mechanisms in the main domestic species. Particular attention was paid to aspects of animal behaviour (food behaviour, social behavior, etc.) as a determinant of interspecies differences in PK or/and PD. Modalities of drug administration are many and result not only from anatomical, physiological and/or behavioural differences across species but also from management options. The latter is the case for collective/group treatment of food-producing animals, frequently dosed by the oral route at a herd or flock level. After drug administration, the main causes of observed inter-species differences arise from species differences in the handling of drugs (absorption, distribution, metabolism, and elimination). Such differences are most common and of greatest magnitude when functions which are phylogenetically divergent between species, such as digestive functions (ruminant vs. non-ruminant, carnivore vs. herbivore, etc.), are involved in drug absorption. Interspecies differences also exist in drug action but these are generally more limited, except when a particular targeted function has evolved, as is the case for reproductive physiology (mammals vs. birds vs. fishes; annual vs. seasonal reproductive cycle in mammals; etc.). In contrast, for antimicrobial and antiparasitic drugs, interspecies differences are more limited and rather reflect those of the pathogens than of the host. Interspecies difference in drug metabolism is a major factor accounting for species differences in PK and also in PD (production or not of active metabolites). Recent and future advances in molecular biology and pharmacogenetics will enable a more comprehensive view of interspecies differences and also between breeds with existing polymorphism. Finally, the main message of this review is that differences between species are not only numerous but also often unpredictable so that no generalisations are possible, even though for several drugs allometric approaches do allow some valuable interspecies extrapolations. Instead, each drug must be investigated on a species-by-species basis to guarantee its effective and safe use, thus ensuring the well-being of animals and safeguarding of the environment and human consumption of animal products.

Publication types

  • Review

MeSH terms

  • Animals
  • Animals, Domestic / classification
  • Birds
  • Drug Therapy / methods
  • Drug Therapy / veterinary
  • Fish Diseases / drug therapy
  • Humans
  • Liver / metabolism
  • Mammals
  • Metabolic Clearance Rate
  • Pharmaceutical Preparations / metabolism
  • Pharmacokinetics
  • Poultry Diseases / drug therapy
  • Species Specificity
  • Veterinary Medicine / standards*

Substances

  • Pharmaceutical Preparations