Characterization of Red Tide Aerosol on the Texas Coast

Harmful Algae. 2005 Jan 1;4(1):87-94. doi: 10.1016/j.hal.2003.12.002.

Abstract

The Gulf of Mexico red tide, caused by the dinoflagellate Karenia brevis (= Gymnodinium breve), occurs almost annually and has adverse economic and health effects. Exposure of people to sea spray containing aerosolized brevetoxins (PbTxs, polyether brevetoxins produced by K. brevis) causes irritation of the eyes, nose, and throat. Anecdotal reports suggest that exposed individuals can experience respiratory irritation and exacerbation of existing respiratory illnesses. There has been no systematic study of human exposure to red tide aerosols. In the fall of 2000, during a red tide episode on the Gulf Coast near Corpus Christi, Texas, we sampled at the Marine Science Institute (MSI) at Port Aransas on 25 October. Between 26-27 October we sampled at the Texas State Aquarium (TSA) near Corpus Christi. Two Hi-Vol samplers equipped with a filter and a five-stage impactor gave low concentrations of PbTxs, requiring us to develop methods to improve the minimum detection limit. An LC/MS/MS technique was used combining an HPLC and the API 365 MS/MS. PbTx-2 and PbTx-3 were detected at the TSA sampling location; however, PbTx was not detected in the samples from the MSI. The concentration of PbTx-2 was 1.5-4.9 ng m(-3) but was much lower for PbTx-3. The ratio of PbTx-2 to PbTx-3 was 8.7 +/- 5.2. During the highest exposure period (26-27 October), PbTx-6 was also detected. No one reported respiratory symptoms at the MSI, whereas at the TSA, several field study workers reported symptoms including nose and throat irritation, and itchy skin. A high-volume impactor was used to aerodynamically classify the particles into different size fractions. PbTx-2 was detected in all samples taken at the TSA; however, PbTx-3 was detected only between 26-27 October when the PbTx concentration was high. The mass median aerodynamic diameter (MMAD) was 7-9 mm with a relatively narrow size range (geometric standard deviation [GSD] about 1.6). In this study, much lower airborne concentrations of PbTx, 1.6-6.7 ng m(-3) were reported, along with a few incidents of upper respiratory symptoms. Although the number of seven workers was too small for statistical analysis, the reported symptoms were consistent with no to low exposure at the MSI and detectable exposures at the TSA. This suggests that at lower environmental concentrations of about 2-7 ng m(-3),exposure to PbTx could result in upper respiratory symptoms. This is consistent with the particle size measurement.