Small RNA diversity in plants and its impact in development

Curr Genomics. 2010 Mar;11(1):14-23. doi: 10.2174/138920210790217918.

Abstract

MicroRNAs are a class of non-coding RNAs involved in post-transcriptional control of gene expression, either via degradation or translational inhibition of target mRNAs. Both experimental and computational approaches have been used to identify miRNAs and their target genes. In plants, deep sequencing methods have recently allowed the analysis of small RNA diversity in different species and/or mutants. Most sequencing efforts have been concentrated on the identification of miRNAs and their mRNA targets have been predicted based on complementarity criteria. The recent demonstration that certain plant miRNAs could act partly via inhibition of protein translation certainly opens new fields of analysis for plant miRNA function on a broader group of targets. The roles of conserved miRNAs on target mRNA stability have been analysed in different species and defined common mechanisms in development and stress responses. In contrast, much less is known about expression patterns or functions of non-conserved miRNAs. In this review, we focus on the comparative analyses of plant small RNA diversity and the action of si/miRNAs in post-transcriptional regulation of some key genes involved in root development.