Design, synthesis, and crystal structures of 6-alkylidene-2'-substituted penicillanic acid sulfones as potent inhibitors of Acinetobacter baumannii OXA-24 carbapenemase

J Am Chem Soc. 2010 Sep 29;132(38):13320-31. doi: 10.1021/ja104092z.

Abstract

Class D β-lactamases represent a growing and diverse class of penicillin-inactivating enzymes that are usually resistant to commercial β-lactamase inhibitors. As many such enzymes are found in multi-drug resistant (MDR) Acinetobacter baumannii and Pseudomonas aeruginosa, novel β-lactamase inhibitors are urgently needed. Five unique 6-alkylidene-2'-substituted penicillanic acid sulfones (1-5) were synthesized and tested against OXA-24, a clinically important β-lactamase that inactivates carbapenems and is found in A. baumannii. Based upon the roles Tyr112 and Met223 play in the OXA-24 β-lactamase, we also engineered two variants (Tyr112Ala and Tyr112Ala,Met223Ala) to test the hypothesis that the hydrophobic tunnel formed by these residues influences inhibitor recognition. IC(50) values against OXA-24 and two OXA-24 β-lactamase variants ranged from 10 ± 1 (4 vs WT) to 338 ± 20 nM (5 vs Tyr112Ala, Met223Ala). Compound 4 possessed the lowest K(i) (500 ± 80 nM vs WT), and 1 possessed the highest inactivation efficiency (k(inact)/K(i) = 0.21 ± 0.02 μM(-1) s(-1)). Electrospray ionization mass spectrometry revealed a single covalent adduct, suggesting the formation of an acyl-enzyme intermediate. X-ray structures of OXA-24 complexed to four inhibitors (2.0-2.6 Å) reveal the formation of stable bicyclic aromatic intermediates with their carbonyl oxygen in the oxyanion hole. These data provide the first structural evidence that 6-alkylidene-2'-substituted penicillin sulfones are effective mechanism-based inactivators of class D β-lactamases. Their unique chemistry makes them developmental candidates. Mechanisms for class D hydrolysis and inhibition are discussed, and a pathway for the evolution of the BlaR1 sensor of Staphylococcus aureus to the class D β-lactamases is proposed.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acinetobacter baumannii / drug effects
  • Acinetobacter baumannii / enzymology*
  • Bacterial Proteins / antagonists & inhibitors*
  • Crystallography, X-Ray
  • Enzyme Inhibitors / chemical synthesis
  • Enzyme Inhibitors / chemistry*
  • Enzyme Inhibitors / pharmacology
  • Microbial Sensitivity Tests
  • Molecular Structure
  • Penicillanic Acid / chemistry*
  • Spectrometry, Mass, Electrospray Ionization
  • Sulfones / chemical synthesis
  • Sulfones / chemistry*
  • Sulfones / pharmacology
  • beta-Lactamase Inhibitors*
  • beta-Lactamases

Substances

  • Bacterial Proteins
  • Enzyme Inhibitors
  • Sulfones
  • beta-Lactamase Inhibitors
  • Penicillanic Acid
  • beta-Lactamases
  • carbapenemase