Nanofibrous TiO2-core/conjugated polymer-sheath composite nanocables were synthesized by in-situ chemical oxidative polymerization of aniline with oxidant in the presence of TiO, nanofibers prepared through an electrospinning process. During the polymerization process, aniline molecules were adsorbed on the surface of TiO2. Upon the addition of oxidant, the polymerization of aniline takes place on the surface of the TiO2 nanofibers and polyaniline (PANI) is gradually deposited on their surface. The resulting TiO2-PANI nanocomposites have a coaxial nanocable structure. The morphological and structural properties of the composite nanocables were analyzed by using high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) and UV-visible spectroscopy (UV-vis), respectively. The HRTEM images proved that PANI (20 nm thickness) covered the surface of the TiO2 nanofibers. Also, the photocatalytic activity for the degradation of organic dyes on fibrous photocatalysts under UV-light was studied. The photocatalytic experiments showed that dye could be degraded more efficiently on the TiO2-PANI composite nanocables than on pure TiO2, due to the charge transfer from PANI to TiO2. The method for the synthesis of these unique structured composite nanocables is simple, rapid and reproducible. This facile method may be developed to produce multifunctional nanocomposites of various polymers with metal oxide fibers on a large scale for various technological applications such as sensors, solar cells, and catalysts.