[Studying specific effects of nootropic drugs on glutamate receptors in the rat brain]

Eksp Klin Farmakol. 2011;74(1):6-10.
[Article in Russian]

Abstract

The influence of nootropic drugs of different groups (piracetam, phenotropil, nooglutil, noopept, semax, meclofenoxate, pantocalcine, and dimebon) on the binding of the corresponding ligands to AMPA, NMDA, and mGlu receptors of rat brain has been studied by the method of radio-ligand binding in vitro. It is established that nooglutil exhibits pharmacologically significant competition with a selective agonist of AMPA receptors ([G-3H]Ro 48-8587) for the receptor binding sites (with IC50 = 6.4 +/- 0.2 microM), while the competition of noopept for these receptor binding sites was lower by an order of magnitude (IC50 = 80 +/- 5.6 microM). The heptapeptide drug semax was moderately competitive with [G-3H]LY 354740 for mGlu receptor sites (IC50 = 33 +/- 2.4 microM). Dimebon moderately influenced the specific binding of the ligand of NMDA receptor channel ([G-3H]MK-801) at IC50 = 59 +/- 3.6 microM. Nootropic drugs of the pyrrolidone group (piracetam, phenotropil) as well as meclofenoxate, pantocalcine (pantogam) in a broad rage of concentrations (10(-4)-10(-10) M) did not affect the binding of the corresponding ligands to glutamate receptors (IC50 100 pM). Thus, the direct neurochemical investigation was used for the first time to qualitatively characterize the specific binding sites for nooglutil and (to a lower extent) noopept on AMPA receptors, for semax on metabotropic glutamate receptors, and for dimebon on the channel region of NMDA receptors. The results are indicative of a selective action of some nootropes on the glutamate family.

Publication types

  • English Abstract

MeSH terms

  • Animals
  • Brain / drug effects*
  • Brain / metabolism
  • In Vitro Techniques
  • Ligands
  • Male
  • Nootropic Agents / pharmacology*
  • Radioligand Assay
  • Rats
  • Rats, Wistar
  • Receptors, AMPA / metabolism
  • Receptors, Glutamate / metabolism*
  • Receptors, Metabotropic Glutamate / metabolism
  • Receptors, N-Methyl-D-Aspartate / metabolism

Substances

  • Ligands
  • Nootropic Agents
  • Receptors, AMPA
  • Receptors, Glutamate
  • Receptors, Metabotropic Glutamate
  • Receptors, N-Methyl-D-Aspartate