Genetic, spatial, and temporal components of precise spawning synchrony in reef building corals of the Montastraea annularis species complex

Evolution. 2011 May;65(5):1254-70. doi: 10.1111/j.1558-5646.2011.01235.x. Epub 2011 Feb 23.

Abstract

When organisms release gametes into the sea, synchrony must be precise to increase fertilization and decrease hybridization. We tagged and genotyped over 400 spawning corals from the three species in the Montastraea annularis species complex. We report on the influence of species, individuals, and genotypes on timing of spawning from 2002 through 2009. During their annual spawning event M. franksi spawns on average 2 h after sunset, whereas M. annularis and M. faveolata spawn 3.5 h after sunset. Only M. franksi and M. annularis have compatible gametes. Individual colonies of the same genotype spawn at approximately the same time after sunset within and across years (within minutes), but different genotypes have significantly different spawning times. Neighboring colonies, regardless of genotype, spawn more synchronously than individuals spaced further apart. At a given distance, clone-mates spawn more synchronously than nonclone-mates. A transplant experiment indicates a genetic and environmental influence on spawn time. There is strong, but not absolute, concordance between spawn time, morphology, and genetics. Tight precision in spawning is achieved via a combination of external cues, genetic precision, and perhaps conspecific signaling. These mechanisms are likely to influence reproductive success and reproductive isolation in a density-dependent manner.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Anthozoa / genetics*
  • Anthozoa / physiology*
  • Biological Evolution
  • Caribbean Region
  • Female
  • Genotype
  • Male
  • Panama
  • Periodicity
  • Reproduction
  • Seasons
  • Species Specificity