Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications

Biochem Pharmacol. 2011 Dec 15;82(12):1807-21. doi: 10.1016/j.bcp.2011.07.093. Epub 2011 Jul 30.

Abstract

An expanding body of preclinical evidence suggests EGCG, the major catechin found in green tea (Camellia sinensis), has the potential to impact a variety of human diseases. Apparently, EGCG functions as a powerful antioxidant, preventing oxidative damage in healthy cells, but also as an antiangiogenic and antitumor agent and as a modulator of tumor cell response to chemotherapy. Much of the cancer chemopreventive properties of green tea are mediated by EGCG that induces apoptosis and promotes cell growth arrest by altering the expression of cell cycle regulatory proteins, activating killer caspases, and suppressing oncogenic transcription factors and pluripotency maintain factors. In vitro studies have demonstrated that EGCG blocks carcinogenesis by affecting a wide array of signal transduction pathways including JAK/STAT, MAPK, PI3K/AKT, Wnt and Notch. EGCG stimulates telomere fragmentation through inhibiting telomerase activity. Various clinical studies have revealed that treatment by EGCG inhibits tumor incidence and multiplicity in different organ sites such as liver, stomach, skin, lung, mammary gland and colon. Recent work demonstrated that EGCG reduced DNMTs, proteases, and DHFR activities, which would affect transcription of TSGs and protein synthesis. EGCG has great potential in cancer prevention because of its safety, low cost and bioavailability. In this review, we discuss its cancer preventive properties and its mechanism of action at numerous points regulating cancer cell growth, survival, angiogenesis and metastasis. Therefore, non-toxic natural agent could be useful either alone or in combination with conventional therapeutics for the prevention of tumor progression and/or treatment of human malignancies.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Antineoplastic Agents / therapeutic use
  • Antioxidants / chemistry
  • Antioxidants / pharmacology*
  • Antioxidants / therapeutic use
  • Apoptosis
  • Camellia sinensis / chemistry*
  • Catechin / analogs & derivatives*
  • Catechin / chemistry
  • Catechin / pharmacology
  • Catechin / therapeutic use
  • Cell Proliferation
  • Cell Transformation, Neoplastic
  • Humans
  • Molecular Structure
  • Neoplasms / drug therapy
  • Neoplasms / prevention & control*
  • Signal Transduction / physiology

Substances

  • Antineoplastic Agents
  • Antioxidants
  • Catechin
  • epigallocatechin gallate