Superfast motion of catalytic microjet engines at physiological temperature

J Am Chem Soc. 2011 Sep 28;133(38):14860-3. doi: 10.1021/ja205012j. Epub 2011 Aug 23.

Abstract

There is a great interest in reducing the toxicity of the fuel used to self-propel artificial nanomachines. Therefore, a method to increase the efficiency of the conversion of chemicals into mechanical energy is desired. Here, we employed temperature control to increase the efficiency of microjet engines while simultaneously reducing the amount of peroxide fuel needed. At physiological temperatures, i.e. 37 °C, only 0.25% H(2)O(2) is needed to propel the microjets at 140 μm s(-1), which corresponds to three body lengths per second. In addition, at 5% H(2)O(2), the microjets acquire superfast speeds, reaching 10 mm s(-1). The dynamics of motion is altered when the speed is increased; i.e., the motion deviates from linear to curvilinear trajectories. The observations are modeled empirically.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Catalysis
  • Cell Survival / drug effects
  • Cells, Cultured
  • Dose-Response Relationship, Drug
  • Electric Power Supplies*
  • Fibroblasts / drug effects
  • Hydrogen Peroxide / chemistry*
  • Hydrogen Peroxide / pharmacology
  • Mice
  • NIH 3T3 Cells
  • Structure-Activity Relationship
  • Temperature*

Substances

  • Hydrogen Peroxide