Experimental taphonomy of giant sulphur bacteria: implications for the interpretation of the embryo-like Ediacaran Doushantuo fossils

Proc Biol Sci. 2012 May 7;279(1734):1857-64. doi: 10.1098/rspb.2011.2064. Epub 2011 Dec 7.

Abstract

The Ediacaran Doushantuo biota has yielded fossils interpreted as eukaryotic organisms, either animal embryos or eukaryotes basal or distantly related to Metazoa. However, the fossils have been interpreted alternatively as giant sulphur bacteria similar to the extant Thiomargarita. To test this hypothesis, living and decayed Thiomargarita were compared with Doushantuo fossils and experimental taphonomic pathways were compared with modern embryos. In the fossils, as in eukaryotic cells, subcellular structures are distributed throughout cell volume; in Thiomargarita, a central vacuole encompasses approximately 98 per cent cell volume. Key features of the fossils, including putative lipid vesicles and nuclei, complex envelope ornament, and ornate outer vesicles are incompatible with living and decay morphologies observed in Thiomargarita. Microbial taphonomy of Thiomargarita also differed from that of embryos. Embryo tissues can be consumed and replaced by bacteria, forming a replica composed of a three-dimensional biofilm, a stable fabric for potential fossilization. Vacuolated Thiomargarita cells collapse easily and do not provide an internal substrate for bacteria. The findings do not support the hypothesis that giant sulphur bacteria are an appropriate interpretative model for the embryo-like Doushantuo fossils. However, sulphur bacteria may have mediated fossil mineralization and may provide a potential bacterial analogue for other macroscopic Precambrian remains.

Publication types

  • Historical Article
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bacteria / classification
  • Bacteria / cytology
  • Bacteria / ultrastructure
  • Embryo, Nonmammalian / physiology
  • Embryo, Nonmammalian / ultrastructure*
  • Eukaryotic Cells / cytology
  • Eukaryotic Cells / physiology
  • Eukaryotic Cells / ultrastructure*
  • Fossils*
  • History, Ancient
  • Sulfur / metabolism*
  • Thiotrichaceae / classification*
  • Thiotrichaceae / cytology
  • Thiotrichaceae / ultrastructure

Substances

  • Sulfur