Characterization of SfmD as a Heme peroxidase that catalyzes the regioselective hydroxylation of 3-methyltyrosine to 3-hydroxy-5-methyltyrosine in saframycin A biosynthesis

J Biol Chem. 2012 Feb 10;287(7):5112-21. doi: 10.1074/jbc.M111.306316. Epub 2011 Dec 20.

Abstract

Saframycin A (SFM-A) is a potent antitumor antibiotic that belongs to the tetrahydroisoquinoline family. Biosynthetic studies have revealed that its unique pentacyclic core structure is derived from alanine, glycine, and non-proteinogenic amino acid 3-hydroxy-5-methyl-O-methyltyrosine (3-OH-5-Me-OMe-Tyr). SfmD, a hypothetical protein in the biosynthetic pathway of SFM-A, was hypothesized to be responsible for the generation of the 3-hydroxy group of 3-OH-5-Me-OMe-Tyr based on previously heterologous expression results. We now report the in vitro characterization of SfmD as a novel heme-containing peroxidase that catalyzes the hydroxylation of 3-methyltyrosine to 3-hydroxy-5-methyltyrosine using hydrogen peroxide as the oxidant. In addition, we elucidated the biosynthetic pathway of 3-OH-5-Me-OMe-Tyr by kinetic studies of SfmD in combination with biochemical assays of SfmM2, a methyltransferase within the same pathway. Furthermore, SacD, a counterpart of SfmD involved in safracin B biosynthesis, was also characterized as a heme-containing peroxidase, suggesting that SfmD-like heme-containing peroxidases may be commonly involved in the biosynthesis of SFM-A and its analogs. Finally, we found that the conserved motif HXXXC is crucial for heme binding using comparative UV-Vis and Magnetic Circular Dichroism (MCD) spectra studies of SfmD wild-type and mutants. Together, these findings expand the category of heme-containing peroxidases and set the stage for further mechanistic studies. In addition, this study has critical implications for delineating the biosynthetic pathway of other related tetrahydroisoquinoline family members.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Motifs
  • Bacterial Outer Membrane Proteins / chemistry
  • Bacterial Outer Membrane Proteins / genetics
  • Bacterial Outer Membrane Proteins / metabolism*
  • Catalysis
  • Escherichia coli / enzymology*
  • Escherichia coli / genetics
  • Escherichia coli Proteins / chemistry
  • Escherichia coli Proteins / genetics
  • Escherichia coli Proteins / metabolism*
  • Hydroxylation / physiology
  • Isoquinolines / metabolism
  • Methyltyrosines / genetics
  • Methyltyrosines / metabolism*
  • Peroxidase / chemistry
  • Peroxidase / genetics
  • Peroxidase / metabolism*

Substances

  • 3-hydroxy-5-methyl-O-methyltyrosine
  • Bacterial Outer Membrane Proteins
  • Escherichia coli Proteins
  • Isoquinolines
  • Methyltyrosines
  • sfmD protein, E coli
  • methyl-3-tyrosine
  • Peroxidase
  • saframycin A