Physics requirements for the design of the ATLAS and CMS experiments at the Large Hadron Collider

Philos Trans A Math Phys Eng Sci. 2012 Feb 28;370(1961):876-91. doi: 10.1098/rsta.2011.0459.

Abstract

The ATLAS and CMS experiments at the CERN Large Hadron Collider are discovery experiments. Thus, the aim was to make them sensitive to the widest possible range of new physics. New physics is likely to reveal itself in addressing questions such as: how do particles acquire mass; what is the particle responsible for dark matter; what is the path towards unification; do we live in a world with more space-time dimensions than the familiar four? The detection of the Higgs boson, conjectured to give mass to particles, was chosen as a benchmark to test the performance of the proposed experiment designs. Higgs production is one of the most demanding hypothesized processes in terms of required detector resolution and background discrimination. ATLAS and CMS feature full coverage, 4π-detectors to measure precisely the energies, directions and identity of all the particles produced in proton-proton collisions. Realizing this goal has required the collaborative efforts of enormous teams of people from around the world.