Two-particle bosonic-fermionic quantum walk via integrated photonics

Phys Rev Lett. 2012 Jan 6;108(1):010502. doi: 10.1103/PhysRevLett.108.010502. Epub 2012 Jan 5.

Abstract

Quantum walk represents one of the most promising resources for the simulation of physical quantum systems, and has also emerged as an alternative to the standard circuit model for quantum computing. Here we investigate how the particle statistics, either bosonic or fermionic, influences a two-particle discrete quantum walk. Such an experiment has been realized by exploiting polarization entanglement to simulate the bunching-antibunching feature of noninteracting bosons and fermions. To this scope a novel three-dimensional geometry for the waveguide circuit is introduced, which allows accurate polarization independent behavior, maintaining remarkable control on both phase and balancement.