Are all spinal segments equal: intrinsic membrane properties of superficial dorsal horn neurons in the developing and mature mouse spinal cord

J Physiol. 2012 May 15;590(10):2409-25. doi: 10.1113/jphysiol.2012.227389. Epub 2012 Feb 20.

Abstract

Neurons in the superficial dorsal horn (SDH; laminae I-II) of the spinal cord process nociceptive information from skin, muscle, joints and viscera. Most of what we know about the intrinsic properties of SDH neurons comes from studies in lumbar segments of the cord even though clinical evidence suggests nociceptive signals from viscera and head and neck tissues are processed differently. This ‘lumbar-centric' view of spinal pain processing mechanisms also applies to developing SDH neurons. Here we ask whether the intrinsic membrane properties of SDH neurons differ across spinal cord segments in both the developing and mature spinal cord. Whole cell recordings were made from SDH neurons in slices of upper cervical (C2-4), thoracic (T8-10) and lumbar (L3-5) segments in neonatal (P0-5) and adult (P24-45) mice. Neuronal input resistance (R(IN)), resting membrane potential, AP amplitude, half-width and AHP amplitude were similar across spinal cord regions in both neonates and adults (∼100 neurons for each region and age). In contrast, these intrinsic membrane properties differed dramatically between neonates and adults. Five types of AP discharge were observed during depolarizing current injection. In neonates, single spiking dominated (∼40%) and the proportions of each discharge category did not differ across spinal regions. In adults, initial bursting dominated in each spinal region, but was significantly more prevalent in rostral segments (49% of neurons in C2-4 vs. 29% in L3-5). During development the dominant AP discharge pattern changed from single spiking to initial bursting. The rapid A-type potassium current (I(Ar)) dominated in neonates and adults, but its prevalence decreased (∼80% vs. ∼50% of neurons) in all regions during development. I(Ar) steady state inactivation and activation also changed in upper cervical and lumbar regions during development. Together, our data show the intrinsic properties of SDH neurons are generally conserved in the three spinal cord regions examined in both neonate and adult mice. We propose the conserved intrinsic membrane properties of SDH neurons along the length of the spinal cord cannot explain the marked differences in pain experienced in the limbs, viscera, and head and neck.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / physiology*
  • Animals
  • Animals, Newborn
  • Cell Membrane / physiology
  • Female
  • In Vitro Techniques
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Posterior Horn Cells / physiology*
  • Rabbits
  • Spinal Cord / physiology*