Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance

J Appl Microbiol. 2012 Oct;113(4):723-36. doi: 10.1111/j.1365-2672.2012.05338.x. Epub 2012 Jun 8.

Abstract

Because of the emergence of antibiotic-resistant pathogens worldwide, a number of infectious diseases have become difficult to treat. This threatening situation is worsened by the fact that very limited progress has been made in developing new and potent antibiotics in recent years. However, a group of antimicrobials, the so-called bacteriocins, have been much studied lately because they hold a great potential in controlling antibiotic-resistant pathogens. Bacteriocins are small antimicrobial peptides (AMPs) produced by numerous bacteria. They often act toward species related to the producer with a very high potency (at pico- to nanomolar concentration) and specificity. The common mechanisms of killing by bacteriocins are destruction of target cells by pore formation and/or inhibition of cell wall synthesis. Several studies have revealed that bacteriocins display great potential in the medical sector as bacteriocinogenic probiotics and in the clinic as therapeutic agents. In this review, we discuss the emerging antibiotic resistance and strategies to control its dissemination, before we highlight the potential of AMPs from bacteria as a new genre of antimicrobial agents.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Bacteria / drug effects*
  • Bacteriocins / classification
  • Bacteriocins / pharmacology*
  • Drug Resistance, Bacterial*
  • Peptides / pharmacology
  • Probiotics

Substances

  • Bacteriocins
  • Peptides