Executive function and falls in older adults: new findings from a five-year prospective study link fall risk to cognition

PLoS One. 2012;7(6):e40297. doi: 10.1371/journal.pone.0040297. Epub 2012 Jun 29.

Abstract

Background: Recent findings suggest that executive function (EF) plays a critical role in the regulation of gait in older adults, especially under complex and challenging conditions, and that EF deficits may, therefore, contribute to fall risk. The objective of this study was to evaluate if reduced EF is a risk factor for future falls over the course of 5 years of follow-up. Secondary objectives were to assess whether single and dual task walking abilities, an alternative window into EF, were associated with fall risk.

Methodology/main results: We longitudinally followed 256 community-living older adults (age: 76.4±4.5 yrs; 61% women) who were dementia free and had good mobility upon entrance into the study. At baseline, a computerized cognitive battery generated an index of EF, attention, a closely related construct, and other cognitive domains. Gait was assessed during single and dual task conditions. Falls data were collected prospectively using monthly calendars. Negative binomial regression quantified risk ratios (RR). After adjusting for age, gender and the number of falls in the year prior to the study, only the EF index (RR: .85; CI: .74-.98, p = .021), the attention index (RR: .84; CI: .75-.94, p = .002) and dual tasking gait variability (RR: 1.11; CI: 1.01-1.23; p = .027) were associated with future fall risk. Other cognitive function measures were not related to falls. Survival analyses indicated that subjects with the lowest EF scores were more likely to fall sooner and more likely to experience multiple falls during the 66 months of follow-up (p<0.02).

Conclusions/significance: These findings demonstrate that among community-living older adults, the risk of future falls was predicted by performance on EF and attention tests conducted 5 years earlier. The present results link falls among older adults to cognition, indicating that screening EF will likely enhance fall risk assessment, and that treatment of EF may reduce fall risk.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Accidental Falls*
  • Adult
  • Aged
  • Cognition / physiology*
  • Executive Function / physiology*
  • Female
  • Follow-Up Studies
  • Gait / physiology
  • Humans
  • Male
  • Prospective Studies
  • Risk Factors
  • Survival Analysis
  • Time Factors