Biosynthesis of the polymannose lipopolysaccharide O-antigens from Escherichia coli serotypes O8 and O9a requires a unique combination of single- and multiple-active site mannosyltransferases

J Biol Chem. 2012 Oct 12;287(42):35078-35091. doi: 10.1074/jbc.M112.401000. Epub 2012 Aug 8.

Abstract

The Escherichia coli O9a and O8 O-antigen serotypes represent model systems for the ABC transporter-dependent synthesis of bacterial polysaccharides. The O9a and O8 antigens are linear mannose homopolymers containing conserved reducing termini (the primer-adaptor), a serotype-specific repeat unit domain, and a terminator. Synthesis of these glycans occurs on the polyisoprenoid lipid-linked primer, undecaprenol pyrophosphoryl-GlcpNAc, by two conserved mannosyltransferases, WbdC and WbdB, and a serotype-specific mannosyltransferase, WbdA. The glycan structure and pattern of conservation in the O9a and O8 mannosyltransferases are not consistent with the existing model of O9a biosynthesis. Here we establish a revised pathway using a combination of in vivo (mutant complementation) experiments and in vitro strategies with purified enzymes and synthetic acceptors. WbdC and WbdB synthesize the adaptor region, where they transfer one and two α-(1→3)-linked mannose residues, respectively. The WbdA enzymes are solely responsible for forming the repeat unit domains of these O-antigens. WbdA(O9a) has two predicted active sites and polymerizes a tetrasaccharide repeat unit containing two α-(1→3)- and two α-(1→2)-linked mannopyranose residues. In contrast, WbdA(O8) polymerizes trisaccharide repeat units containing single α-(1→3)-, α-(1→2)-, and β-(1→2)-mannopyranoses. These studies illustrate assembly systems exploiting several mannosyltransferases with flexible active sites, arranged in single- and multiple-domain formats.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Escherichia coli / genetics
  • Escherichia coli / metabolism*
  • Escherichia coli Proteins / genetics
  • Escherichia coli Proteins / metabolism*
  • Mannans / biosynthesis*
  • Mannans / genetics
  • Mannosyltransferases / genetics
  • Mannosyltransferases / metabolism*
  • O Antigens / biosynthesis*
  • O Antigens / genetics
  • Polyisoprenyl Phosphates / metabolism

Substances

  • Escherichia coli Proteins
  • Mannans
  • O Antigens
  • Polyisoprenyl Phosphates
  • polymannose
  • undecaprenyl pyrophosphate
  • Mannosyltransferases