Where, when and why do tsetse contact humans? Answers from studies in a national park of Zimbabwe

PLoS Negl Trop Dis. 2012;6(8):e1791. doi: 10.1371/journal.pntd.0001791. Epub 2012 Aug 28.

Abstract

Background: Sleeping sickness, also called human African trypanosomiasis, is transmitted by the tsetse, a blood-sucking fly confined to sub-Saharan Africa. The form of the disease in West and Central Africa is carried mainly by species of tsetse that inhabit riverine woodland and feed avidly on humans. In contrast, the vectors for the East and Southern African form of the disease are usually savannah species that feed mostly on wild and domestic animals and bite humans infrequently, mainly because the odours produced by humans can be repellent. Hence, it takes a long time to catch many savannah tsetse from people, which in turn means that studies of the nature of contact between savannah tsetse and humans, and the ways of minimizing it, have been largely neglected.

Methodology/principal findings: The savannah tsetse, Glossina morsitans morsitans and G. pallidipes, were caught from men in the Mana Pools National park of Zimbabwe. Mostly the catch consisted of young G. m. morsitans, with little food reserve. Catches were increased by 4-8 times if the men were walking, not stationary, and increased about ten times more if they rode on a truck at 10 km/h. Catches were unaffected if the men used deodorant or were baited with artificial ox odour, but declined by about 95% if the men were with an ox. Surprisingly, men pursuing their normal daily activities were bitten about as much when in or near buildings as when in woodland. Catches from oxen and a standard ox-like trap were poor indices of the number and physiological state of tsetse attacking men.

Conclusion/significance: The search for new strategies to minimize the contact between humans and savannah tsetse should focus on that occurring in buildings and vehicles. There is a need to design a man-like trap to help to provide an index of sleeping sickness risk.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Disease Vectors*
  • Feeding Behavior*
  • Female
  • Humans
  • Insect Bites and Stings / epidemiology*
  • Male
  • Pregnancy
  • Tsetse Flies / physiology*
  • Zimbabwe

Grants and funding

This work was supported by UNICEF/UNDP/World Bank/FAO Special Programme for Research and Training in Tropical Diseases (Project no. A70598). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.