Mutualism with sea anemones triggered the adaptive radiation of clownfishes

BMC Evol Biol. 2012 Nov 2:12:212. doi: 10.1186/1471-2148-12-212.

Abstract

Background: Adaptive radiation is the process by which a single ancestral species diversifies into many descendants adapted to exploit a wide range of habitats. The appearance of ecological opportunities, or the colonisation or adaptation to novel ecological resources, has been documented to promote adaptive radiation in many classic examples. Mutualistic interactions allow species to access resources untapped by competitors, but evidence shows that the effect of mutualism on species diversification can greatly vary among mutualistic systems. Here, we test whether the development of obligate mutualism with sea anemones allowed the clownfishes to radiate adaptively across the Indian and western Pacific oceans reef habitats.

Results: We show that clownfishes morphological characters are linked with ecological niches associated with the sea anemones. This pattern is consistent with the ecological speciation hypothesis. Furthermore, the clownfishes show an increase in the rate of species diversification as well as rate of morphological evolution compared to their closest relatives without anemone mutualistic associations.

Conclusions: The effect of mutualism on species diversification has only been studied in a limited number of groups. We present a case of adaptive radiation where mutualistic interaction is the likely key innovation, providing new insights into the mechanisms involved in the buildup of biodiversity. Due to a lack of barriers to dispersal, ecological speciation is rare in marine environments. Particular life-history characteristics of clownfishes likely reinforced reproductive isolation between populations, allowing rapid species diversification.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological*
  • Animals
  • Biological Evolution
  • Ecosystem
  • Genetic Variation
  • Host-Parasite Interactions
  • Perciformes / classification
  • Perciformes / genetics
  • Perciformes / parasitology*
  • Phylogeny*
  • Sea Anemones / classification
  • Sea Anemones / physiology*
  • Species Specificity
  • Symbiosis