The activity intensities reached when playing active tennis gaming relative to sedentary gaming, tennis game-play, and current activity recommendations in young adults

J Strength Cond Res. 2013 Sep;27(9):2588-95. doi: 10.1519/JSC.0b013e31827f523e.

Abstract

Although active gaming is popular and can increase energy expenditure in young adults, its efficacy as a prescriptive exercise tool is not well understood. This study aimed to: (a) compare the activity intensities experienced by young adults while playing active tennis gaming with conventional sedentary gaming, tennis game-play, and current activity recommendations for health; and (b) identify changes in activity intensities across playing time. After habitualization, 10 active young adults (age: 20.2 ± 0.4 years; stature: 1.74 ± 0.03 m; body mass: 67.7 ± 3.3 kg) completed 3 experimental trials (sedentary gaming, active tennis gaming, and tennis game-play) on separate days in a randomized order. Heart rate (HR) and metabolic equivalents (METs) were averaged across 5 minutes and 10 minutes intervals, and the entire 20 minutes bout within each condition. Active gaming produced greater intensities across 5-10, 10-15, and 15-20 minutes time intervals compared with sedentary gaming (p < 0.01). Tennis game-play elicited greater HR (67 ± 5% HR(max)) and METs (5.0 ± 0.2) responses than both sedentary (40 ± 2% HR(max), 1.1 ± 0.1 METs) and active gaming (45 ± 2% HR(max), 1.4 ± 0.1 METs) (p < 0.001). Only tennis game-play produced activity intensities meeting current recommendations for health benefit. Lower HR intensities were reached across 0-5 minutes than during later time intervals during active gaming (6%) and tennis game-play (9%) (p < 0.01). Activity intensities elicited by active gaming were greater than sedentary gaming but less than tennis game-play and insufficient to contribute toward promoting and maintaining good health in young adults. These data suggest that active tennis gaming should not be recommended by exercise professionals as a substitute for actual sports participation in young adults.

MeSH terms

  • Female
  • Heart Rate / physiology
  • Humans
  • Male
  • Motor Activity / physiology
  • Oxygen Consumption / physiology
  • Physical Exertion / physiology*
  • Tennis / physiology*
  • Tennis / standards
  • Time Factors
  • Young Adult