Reconstitution of a thermostable xylan-degrading enzyme mixture from the bacterium Caldicellulosiruptor bescii

Appl Environ Microbiol. 2013 Mar;79(5):1481-90. doi: 10.1128/AEM.03265-12. Epub 2012 Dec 21.

Abstract

Xylose, the major constituent of xylans, as well as the side chain sugars, such as arabinose, can be metabolized by engineered yeasts into ethanol. Therefore, xylan-degrading enzymes that efficiently hydrolyze xylans will add value to cellulases used in hydrolysis of plant cell wall polysaccharides for conversion to biofuels. Heterogeneous xylan is a complex substrate, and it requires multiple enzymes to release its constituent sugars. However, the components of xylan-degrading enzymes are often individually characterized, leading to a dearth of research that analyzes synergistic actions of the components of xylan-degrading enzymes. In the present report, six genes predicted to encode components of the xylan-degrading enzymes of the thermophilic bacterium Caldicellulosiruptor bescii were expressed in Escherichia coli, and the recombinant proteins were investigated as individual enzymes and also as a xylan-degrading enzyme cocktail. Most of the component enzymes of the xylan-degrading enzyme mixture had similar optimal pH (5.5 to ∼6.5) and temperature (75 to ∼90°C), and this facilitated their investigation as an enzyme cocktail for deconstruction of xylans. The core enzymes (two endoxylanases and a β-xylosidase) exhibited high turnover numbers during catalysis, with the two endoxylanases yielding estimated k(cat) values of ∼8,000 and ∼4,500 s(-1), respectively, on soluble wheat arabinoxylan. Addition of side chain-cleaving enzymes to the core enzymes increased depolymerization of a more complex model substrate, oat spelt xylan. The C. bescii xylan-degrading enzyme mixture effectively hydrolyzes xylan at 65 to 80°C and can serve as a basal mixture for deconstruction of xylans in bioenergy feedstock at high temperatures.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Avena / chemistry
  • Enzyme Stability
  • Escherichia coli / enzymology
  • Escherichia coli / genetics
  • Gene Expression
  • Gram-Positive Bacteria / enzymology*
  • Gram-Positive Bacteria / genetics
  • Hydrogen-Ion Concentration
  • Kinetics
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / isolation & purification
  • Recombinant Proteins / metabolism
  • Temperature
  • Triticum / chemistry
  • Xylans / metabolism*
  • Xylosidases / chemistry
  • Xylosidases / genetics
  • Xylosidases / isolation & purification
  • Xylosidases / metabolism*

Substances

  • Recombinant Proteins
  • Xylans
  • Xylosidases