Origins and diversity of eukaryotic CO2-concentrating mechanisms: lessons for the future

J Exp Bot. 2013 Jan;64(3):769-86. doi: 10.1093/jxb/ers390.

Abstract

The importance of the eukaryotic algal CO(2)-concentrating mechanism (CCM) is considered in terms of global productivity as well as molecular phylogeny and diversity. The three major constituents comprising the CCM in the majority of eukaryotes are described. These include: (i) likely plasma- and chloroplast-membrane inorganic carbon transporters; (ii) a suite of carbonic anhydrase enzymes in strategic locations; and usually (iii) a microcompartment in which most Rubisco aggregates (the chloroplast pyrenoid). The molecular diversity of known CCM components are set against the current green algal model for their probable operation. The review then focuses on the kinetic and cystallographic interactions of Rubisco, which permit pyrenoid formation and CCM function. Firstly, we consider observations that surface residues of the Rubisco small subunit directly condition Rubisco aggregation and pyrenoid formation. Secondly, we reanalyse the phylogenetic progression in green Rubisco kinetic properties, and suggest that Rubisco substrate selectivity (the specificity factor, S(rel), and affinity for CO(2), K(c)) demonstrate a systematic relaxation, which directly relates to the origins and effectiveness of a CCM. Finally, we consider the implications of eukaryotic CCM regulation and minimum components needed for introduction into higher plants as a possible means to enhance crop productivity in the future.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Biodiversity*
  • Carbon Dioxide / metabolism*
  • Eukaryota / classification
  • Eukaryota / genetics
  • Eukaryota / metabolism*
  • Phylogeny
  • Ribulose-Bisphosphate Carboxylase / chemistry
  • Ribulose-Bisphosphate Carboxylase / genetics
  • Ribulose-Bisphosphate Carboxylase / metabolism

Substances

  • Carbon Dioxide
  • Ribulose-Bisphosphate Carboxylase