DNA damage response in male gametes of Cyrtanthus mackenii during pollen tube growth

AoB Plants. 2013:5:plt004. doi: 10.1093/aobpla/plt004. Epub 2013 Feb 27.

Abstract

Male gametophytes of plants are exposed to environmental stress and mutagenic agents during the double fertilization process and therefore need to repair the DNA damage in order to transmit the genomic information to the next generation. However, the DNA damage response in male gametes is still unclear. In the present study, we analysed the response to DNA damage in the generative cells of Cyrtanthus mackenii during pollen tube growth. A carbon ion beam, which can induce DNA double-strand breaks (DSBs), was used to irradiate the bicellular pollen, and then the irradiated pollen grains were cultured in a liquid culture medium. The male gametes were isolated from the cultured pollen tubes and used for immunofluorescence analysis. Although inhibitory effects on pollen tube growth were not observed after irradiation, sperm cell formation decreased significantly after high-dose irradiation. After high-dose irradiation, the cell cycle progression of generative cells was arrested at metaphase in pollen mitosis II, and phosphorylated H2AX (γH2AX) foci, an indicator of DSBs, were detected in the majority of the arrested cells. However, these foci were not detected in cells that were past metaphase. Cell cycle progression in irradiated generative cells is regulated by the spindle assembly checkpoint, and modification of the histones surrounding the DSBs was confirmed. These results indicate that during pollen tube growth generative cells can recognize and manage genomic lesions using DNA damage response pathways. In addition, the number of generative cells with γH2AX foci decreased with culture prolongation, suggesting that the DSBs in the generative cells are repaired.

Keywords: DNA double-strand break; DNA repair; generative cell; heavy ion beam; pollen; sperm cell; spindle assembly checkpoint.