A validated high performance thin layer chromatography method for determination of yohimbine hydrochloride in pharmaceutical preparations

Pharmacogn Mag. 2013 Jan;9(33):4-8. doi: 10.4103/0973-1296.108124.

Abstract

Background: Yohimbine is an indole alkaloid used as a promising therapy for erectile dysfunction. A number of methods were reported for the analysis of yohimbine in the bark or in pharmaceutical preparations.

Materials and method: In the present work, a simple and sensitive high performance thin layer chromatographic method is developed for determination of yohimbine (occurring as yohimbine hydrochloride) in pharmaceutical preparations and validated according to International Conference of Harmonization (ICH) guidelines. The method employed thin layer chromatography aluminum sheets precoated with silica gel as the stationary phase and the mobile phase consisted of chloroform:methanol:ammonia (97:3:0.2), which gave compact bands of yohimbine hydrochloride.

Results: Linear regression data for the calibration curves of standard yohimbine hydrochloride showed a good linear relationship over a concentration range of 80-1000 ng/spot with respect to the area and correlation coefficient (R(2)) was 0.9965. The method was evaluated regarding accuracy, precision, selectivity, and robustness. Limits of detection and quantitation were recorded as 5 and 40 ng/spot, respectively. The proposed method efficiently separated yohimbine hydrochloride from other components even in complex mixture containing powdered plants. The amount of yohimbine hydrochloride ranged from 2.3 to 5.2 mg/tablet or capsule in preparations containing the pure alkaloid, while it varied from zero (0) to 1.5-1.8 mg/capsule in dietary supplements containing powdered yohimbe bark.

Conclusion: We concluded that this method employing high performance thin layer chromatography (HPTLC) in quantitative determination of yohimbine hydrochloride in pharmaceutical preparations is efficient, simple, accurate, and validated.

Keywords: Accuracy; dietary supplements; high performance thin layer chromatography; precision; selectivity; yohimbine.