Platelet-rich plasma and the elimination of neuropathic pain

Mol Neurobiol. 2013 Oct;48(2):315-32. doi: 10.1007/s12035-013-8494-7. Epub 2013 Jul 7.

Abstract

Peripheral neuropathic pain typically results from trauma-induced nociceptive neuron hyperexcitability and their spontaneous ectopic activity. This pain persists until the trauma-induced cascade of events runs its full course, which results in complete tissue repair, including the nociceptive neurons recovering their normal biophysical properties, ceasing to be hyperexcitable, and stopping having spontaneous electrical activity. However, if a wound undergoes no, insufficient, or too much inflammation, or if a wound becomes stuck in an inflammatory state, chronic neuropathic pain persists. Although various drugs and techniques provide temporary relief from chronic neuropathic pain, many have serious side effects, are not effective, none promotes the completion of the wound healing process, and none provides permanent pain relief. This paper examines the hypothesis that chronic neuropathic pain can be permanently eliminated by applying platelet-rich plasma to the site at which the pain originates, thereby triggering the complete cascade of events involved in normal wound repair. Many published papers claim that the clinical application of platelet-rich plasma to painful sites, such as muscle injuries and joints, or to the ends of nerves evoking chronic neuropathic pain, a process often referred to as prolotherapy, eliminates pain initiated at such sites. However, there is no published explanation of a possible mechanism/s by which platelet-rich plasma may accomplish this effect. This paper discusses the normal physiological cascade of trauma-induced events that lead to chronic neuropathic pain and its eventual elimination, techniques being studied to reduce or eliminate neuropathic pain, and how the application of platelet-rich plasma may lead to the permanent elimination of neuropathic pain. It concludes that platelet-rich plasma eliminates neuropathic pain primarily by platelet- and stem cell-released factors initiating the complex cascade of wound healing events, starting with the induction of enhanced inflammation and its complete resolution, followed by all the subsequent steps of tissue remodeling, wound repair and axon regeneration that result in the elimination of neuropathic pain, and also by some of these same factors acting directly on neurons to promote axon regeneration thereby eliminating neuropathic pain.

Publication types

  • Review

MeSH terms

  • Animals
  • Clinical Trials as Topic
  • Humans
  • Neuralgia / prevention & control*
  • Neuralgia / therapy*
  • Platelet-Rich Plasma / metabolism*
  • Stem Cells / cytology