Revised vertebral count in the "longest-necked vertebrate" Elasmosaurus platyurus Cope 1868, and clarification of the cervical-dorsal transition in Plesiosauria

PLoS One. 2013 Aug 5;8(8):e70877. doi: 10.1371/journal.pone.0070877. Print 2013.

Abstract

Elasmosaurid plesiosaurians are renowned for their immensely long necks, and indeed, possessed the highest number of cervical vertebrae for any known vertebrate. Historically, the largest count has been attributed to the iconic Elasmosaurus platyurus from the Late Cretaceous of Kansas, but estimates for the total neck series in this taxon have varied between published reports. Accurately determining the number of vertebral centra vis-à-vis the maximum length of the neck in plesiosaurians has significant implications for phylogenetic character designations, as well as the inconsistent terminology applied to some osteological structures. With these issues in mind, we reassessed the holotype of E. platyurus as a model for standardizing the debated cervical-dorsal transition in plesiosaurians, and during this procedure, documented a "lost" cervical centrum. Our revision also advocates retention of the term "pectorals" to describe the usually three or more distinctive vertebrae close to the cranial margin of the forelimb girdle that bear a functional rib facet transected by the neurocentral suture, and thus conjointly formed by both the parapophysis on the centrum body and diapophysis from the neural arch (irrespective of rib length). This morphology is unambiguously distinguishable from standard cervicals, in which the functional rib facet is borne exclusively on the centrum, and dorsals in which the rib articulation is situated above the neurocentral suture and functionally borne only by the transverse process of the neural arch. Given these easily distinguishable definitions, the maximum number of neck vertebrae preserved in E. platyurus is 72; this is only three vertebrae shorter than the recently described Albertonectes, which together with E. platyurus constitute the "longest necked" animals ever to have lived.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cervical Vertebrae / anatomy & histology*
  • Fossils
  • Neck / anatomy & histology*
  • Reptiles / anatomy & histology*

Grants and funding

BPK acknowledges funding from the Swedish Research Council and Australian Research Council. These grants supported the analyses of the paper. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.