A small conductance calcium-activated K+ channel in C. elegans, KCNL-2, plays a role in the regulation of the rate of egg-laying

PLoS One. 2013 Sep 10;8(9):e75869. doi: 10.1371/journal.pone.0075869. eCollection 2013.

Abstract

In the nervous system of mice, small conductance calcium-activated potassium (SK) channels function to regulate neuronal excitability through the generation of a component of the medium afterhyperpolarization that follows action potentials. In humans, irregular action potential firing frequency underlies diseases such as ataxia, epilepsy, schizophrenia and Parkinson's disease. Due to the complexity of studying protein function in the mammalian nervous system, we sought to characterize an SK channel homologue, KCNL-2, in C. elegans, a genetically tractable system in which the lineage of individual neurons was mapped from their early developmental stages. Sequence analysis of the KCNL-2 protein reveals that the six transmembrane domains, the potassium-selective pore and the calmodulin binding domain are highly conserved with the mammalian homologues. We used widefield and confocal fluorescent imaging to show that a fusion construct of KCNL-2 with GFP in transgenic lines is expressed in the nervous system of C. elegans. We also show that a KCNL-2 null strain, kcnl-2(tm1885), demonstrates a mild egg-laying defective phenotype, a phenotype that is rescued in a KCNL-2-dependent manner. Conversely, we show that transgenic lines that overexpress KCNL-2 demonstrate a hyperactive egg-laying phenotype. In this study, we show that the vulva of transgenic hermaphrodites is highly innervated by neuronal processes and by the VC4 and VC5 neurons that express GFP-tagged KCNL-2. We propose that KCNL-2 functions in the nervous system of C. elegans to regulate the rate of egg-laying.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Caenorhabditis elegans / genetics
  • Caenorhabditis elegans / metabolism
  • Caenorhabditis elegans / physiology*
  • Conserved Sequence
  • Gene Expression Regulation
  • Mice
  • Molecular Sequence Data
  • Nervous System / metabolism
  • Oviposition*
  • Phenotype
  • Protein Structure, Tertiary
  • Small-Conductance Calcium-Activated Potassium Channels / chemistry
  • Small-Conductance Calcium-Activated Potassium Channels / genetics
  • Small-Conductance Calcium-Activated Potassium Channels / metabolism*

Substances

  • KCNL-2 protein, C elegans
  • Small-Conductance Calcium-Activated Potassium Channels