RGS3 controls T lymphocyte migration in a model of Th2-mediated airway inflammation

Am J Physiol Lung Cell Mol Physiol. 2013 Nov 15;305(10):L693-701. doi: 10.1152/ajplung.00214.2013. Epub 2013 Sep 27.

Abstract

T cell migration toward sites of antigen exposure is mediated by G protein signaling and is a key function in the development of immune responses. Regulators of G protein signaling (RGS) proteins modulate G protein signaling; however, their role in the regulation of adaptive immune responses has not been thoroughly explored. Herein we demonstrated abundant expression of the Gi/Gq-specific RGS3 in activated T cells, and that diminished RGS3 expression in a T cell thymoma increased cytokine-induced migration. To examine the role of endogenous RGS3 in vivo, mice deficient in the RGS domain (RGS3(ΔRGS)) were generated and tested in an experimental model of asthma. Compared with littermate controls, the inflammation in the RGS3(ΔRGS) mice was characterized by increased T cell numbers and the striking development of perivascular lymphoid structures. Surprisingly, while innate inflammatory cells were also increased in the lungs of RGS3(ΔRGS) mice, eosinophil numbers and Th2 cytokine production were equivalent to control mice. In contrast, T cell numbers in the draining lymph nodes (dLN) were reduced in the RGS3(ΔRGS), demonstrating a redistribution of T cells from the dLN to the lungs via increased RGS3(ΔRGS) T cell migration. Together these novel findings show a nonredundant role for endogenous RGS3 in controlling T cell migration in vitro and in an in vivo model of inflammation.

Keywords: C cell; G proteins; T cell; asthma; regulators of G protein signaling.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis
  • Blotting, Western
  • Cell Differentiation
  • Cell Movement*
  • Cell Proliferation
  • Disease Models, Animal
  • Female
  • Flow Cytometry
  • Inflammation / etiology*
  • Inflammation / metabolism
  • Inflammation / pathology
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Pyroglyphidae / pathogenicity
  • RGS Proteins / physiology*
  • Respiratory Mucosa / immunology*
  • Respiratory Mucosa / metabolism
  • Respiratory Mucosa / pathology
  • T-Lymphocytes / immunology*
  • T-Lymphocytes / metabolism
  • T-Lymphocytes / pathology
  • Th2 Cells / immunology*
  • Th2 Cells / metabolism
  • Th2 Cells / pathology

Substances

  • RGS Proteins
  • Rgs3 protein, mouse