Roles of epithelial-mesenchymal transition in cancer drug resistance

Curr Cancer Drug Targets. 2013 Nov;13(9):915-29. doi: 10.2174/15680096113136660097.

Abstract

Overcoming intrinsic and acquired drug resistance is a major challenge in treating cancer. Poor responses to drug treatment can result in metastasis, cancer dissemination and death. Recently, the epithelial-mesenchymal transition (EMT) has been found to play a critical role in cancer drug resistance, but the nature of this intrinsic link remains unclear. This review summarizes recent advances in the understanding of drug resistance and focuses especially on the association between EMT and drug resistance. We discuss the roles of EMT in regulating drug resistance across different types of cancer, focusing simultaneously on the molecular mechanisms and potential pathways involved in the regulation of drug resistance by EMT. In addition, we discuss potential therapeutic strategies to target EMT to reverse drug resistance.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacokinetics
  • Antineoplastic Agents / pharmacology
  • Drug Resistance, Neoplasm / physiology*
  • Epithelial-Mesenchymal Transition / drug effects
  • Epithelial-Mesenchymal Transition / physiology*
  • Humans
  • Neoplasms / diet therapy
  • Neoplasms / drug therapy
  • Signal Transduction / drug effects
  • Signal Transduction / physiology

Substances

  • Antineoplastic Agents