Attached and free-living bacteria: Production and polymer hydrolysis during a diatom bloom

Microb Ecol. 1995 May;29(3):231-48. doi: 10.1007/BF00164887.

Abstract

Abundance, production and extracellular enzymatic activity of free-living and attached bacteria were measured during the development and collapse of a spring bloom in a eutrophic lake. Free-living bacteria accounted for most of the total bacterial production during the first part of the bloom. Their production had a significant positive correlation to chlorophyll (P < .01) and polysaccharide concentration (P < .02) and to potential β-glucosidase and aminopeptidase activity (P < .05), suggesting that algal release of dissolved polymeric compounds provided an important carbon source for bacterial production. As the bloom collapsed, we observed a change in the activity and structure of the microbial community. The mean contribution of attached bacteria to total bacterial production increased from 12% during the first part of the bloom to 26% at the end. Also, the extracellular enzymatic activity of attached bacteria increased as the bloom collapsed and constituted up to 75% of the total hydrolytic activity. An estimated disparity between hydrolytic activity and the corresponding carbon demand of attached bacteria suggested a net release of dissolved organic compounds from organic particles via polymer hydrolysis by attached bacteria.