The earliest colubroid-dominated snake fauna from Africa: perspectives from the Late Oligocene Nsungwe Formation of southwestern Tanzania

PLoS One. 2014 Mar 19;9(3):e90415. doi: 10.1371/journal.pone.0090415. eCollection 2014.

Abstract

The extant snake fauna has its roots in faunal upheaval occurring across the Paleogene-Neogene transition. On northern continents, this turnover is well established by the late early Miocene. However, this transition is poorly documented on southern landmasses, particularly on continental Africa, where no late Paleogene terrestrial snake assemblages are documented south of the equator. Here we describe a newly discovered snake fauna from the Late Oligocene Nsungwe Formation in the Rukwa Rift Basin of Tanzania. The fauna is small but diverse with eight identifiable morphotypes, comprised of three booids and five colubroids. This fauna includes Rukwanyoka holmani gen. et sp. nov., the oldest boid known from mainland Africa. It also provides the oldest fossil evidence for the African colubroid clade Elapidae. Colubroids dominate the fauna, comprising more than 75% of the recovered material. This is likely tied to local aridification and/or seasonality and mirrors the pattern of overturn in later snake faunas inhabiting the emerging grassland environments of Europe and North America. The early emergence of colubroid dominance in the Rukwa Rift Basin relative to northern continents suggests that the pattern of overturn that resulted in extant faunas happened in a more complex fashion on continental Africa than was previously realized, with African colubroids becoming at least locally important in the late Paleogene, either ahead of or as a consequence of the invasion of colubrids. The early occurrence of elapid snakes in the latest Oligocene of Africa suggests the clade rapidly spread from Asia to Africa, or arose in Africa, before invading Europe.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biological Evolution
  • Bone and Bones / anatomy & histology*
  • Bone and Bones / physiology
  • Extinction, Biological
  • Fossils*
  • Paleontology
  • Phylogeny*
  • Phylogeography
  • Snakes / anatomy & histology*
  • Snakes / classification
  • Snakes / physiology
  • Tanzania

Grants and funding

Financial support was provided by: National Geographic Society (CRE), LSB Leakey Foundation, Ohio University African Studies Program, Ohio University Research Council, Ohio University Heritage College of Osteopathic Medicine Research and Scholarly Affairs Committee, and the National Science Foundation (EAR 0617561; EAR/IF 0933619; BCS 1127164). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.