Development of a conditionally immortalized human pancreatic β cell line

J Clin Invest. 2014 May;124(5):2087-98. doi: 10.1172/JCI72674. Epub 2014 Mar 25.

Abstract

Diabetic patients exhibit a reduction in β cells, which secrete insulin to help regulate glucose homeostasis; however, little is known about the factors that regulate proliferation of these cells in human pancreas. Access to primary human β cells is limited and a challenge for both functional studies and drug discovery progress. We previously reported the generation of a human β cell line (EndoC-βH1) that was generated from human fetal pancreas by targeted oncogenesis followed by in vivo cell differentiation in mice. EndoC-βH1 cells display many functional properties of adult β cells, including expression of β cell markers and insulin secretion following glucose stimulation; however, unlike primary β cells, EndoC-βH1 cells continuously proliferate. Here, we devised a strategy to generate conditionally immortalized human β cell lines based on Cre-mediated excision of the immortalizing transgenes. The resulting cell line (EndoC-βH2) could be massively amplified in vitro. After expansion, transgenes were efficiently excised upon Cre expression, leading to an arrest of cell proliferation and pronounced enhancement of β cell-specific features such as insulin expression, content, and secretion. Our data indicate that excised EndoC-βH2 cells are highly representative of human β cells and should be a valuable tool for further analysis of human β cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line, Transformed / cytology*
  • Cell Line, Transformed / metabolism
  • Cell Proliferation*
  • Gene Expression Regulation / physiology
  • Humans
  • Insulin / biosynthesis
  • Insulin-Secreting Cells / cytology*
  • Insulin-Secreting Cells / metabolism
  • Mice

Substances

  • Insulin

Associated data

  • GEO/GSE48101