The evolving role of chemical synthesis in antibacterial drug discovery

Angew Chem Int Ed Engl. 2014 Aug 18;53(34):8840-69. doi: 10.1002/anie.201310843. Epub 2014 Jul 2.

Abstract

The discovery and implementation of antibiotics in the early twentieth century transformed human health and wellbeing. Chemical synthesis enabled the development of the first antibacterial substances, organoarsenicals and sulfa drugs, but these were soon outshone by a host of more powerful and vastly more complex antibiotics from nature: penicillin, streptomycin, tetracycline, and erythromycin, among others. These primary defences are now significantly less effective as an unavoidable consequence of rapid evolution of resistance within pathogenic bacteria, made worse by widespread misuse of antibiotics. For decades medicinal chemists replenished the arsenal of antibiotics by semisynthetic and to a lesser degree fully synthetic routes, but economic factors have led to a subsidence of this effort, which places society on the precipice of a disaster. We believe that the strategic application of modern chemical synthesis to antibacterial drug discovery must play a critical role if a crisis of global proportions is to be averted.

Keywords: antibiotics; chemical synthesis; drug discovery; semisynthesis.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Anti-Bacterial Agents / chemical synthesis*
  • Anti-Bacterial Agents / pharmacology
  • Drug Discovery*
  • Drug Resistance, Bacterial

Substances

  • Anti-Bacterial Agents