Morphological restructuring of myocardium during the early phase of experimental diabetes mellitus

Anat Rec (Hoboken). 2015 Feb;298(2):396-407. doi: 10.1002/ar.23052. Epub 2014 Oct 6.

Abstract

The purpose of this study was to determine the specific features of the morphological restructuring of the myocardium in the early stage of experimental diabetes mellitus (DM). Experimental type 1 DM rat model was developed by intraperitoneal injection of alloxan solution at a dose of 30 mg per 100 g body mass. After 1 month, 3 mL of blood was drawn by heart puncture and the plasma separated by centrifugation for biochemical analysis. Plasma glucose, insulin, and glycosylated haemoglobin in whole blood were determined. Light microscopy and morphometric studies were conducted of histological slices of the hearts of experimental animals. The investigation of heart morphology showed a statistically significant alteration in chamber wall thickness in the right auricle in rats with alloxan-induced DM. A change in cardiomyocyte diameter in myocardium slices was observed in all chambers of DM rats except for the left ventricle. Average cardiomyocyte diameter in rats with experimental DM increased by 26.6% and 15.5% in the right auricle and right ventricle, respectively, while average cardiomyocyte diameter in the left auricle decreased by 20.8%. Histological investigation of the heart following alloxan injection demonstrated, under the epicardium, distended vessels of the venous collecting microcirculatory system. Aggregation and agglutination of red blood cells and endothelial cell destruction were found in some vessels. In the early stage of DM development, structural alterations in the microcirculatory channels and myocardiocytes can be observed in the heart. These structural alterations were most evident in the right chambers of the heart.

Keywords: alloxan; early stage; experimental diabetes; right auricle.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Diabetes Mellitus, Experimental / blood
  • Diabetes Mellitus, Experimental / pathology*
  • Male
  • Microcirculation / physiology
  • Myocardium / metabolism
  • Myocardium / pathology*
  • Myocytes, Cardiac / metabolism
  • Myocytes, Cardiac / pathology*
  • Rats