Multiscale layered biomechanical model of the pacinian corpuscle

IEEE Trans Haptics. 2015 Jan-Mar;8(1):31-42. doi: 10.1109/TOH.2014.2369416. Epub 2014 Nov 11.

Abstract

This paper describes a multiscale analytical model of the lamellar structure and the biomechanical response of the Pacinian Corpuscle (PC). In order to analyze the contribution of the PC lamellar structure for detecting high-frequency vibrotactile (VT) stimuli covering 10 Hz to a few kHz, the model response is studied against trapezoidal and sinusoidal stimuli. The model identifies a few generalizable features of the lamellar structure which makes it scalable for different sizes of PC with different number of lamellae. The model describes the mechanical signal conditioning of the lamellar structure in terms of a recursive transfer-function, termed as the Compression-Transmittance-Transfer-Function (CTTF). The analytical results show that with the increase of the PC layer index above 15, the PC inner core (IC) relaxes within 1 ms against step compression of the outermost layer. This model also considers the mass of each PC layer to investigate its effect on the biomechanical response of the lamellar structure. The interlamellar spacing and its biomechanical properties along with the model response are validated with experimental data in the literature. The proposed model can be used for simulating a network of PCs considering their diversity for analyzing the high-frequency VT sensitivity of the human skin.

MeSH terms

  • Biomechanical Phenomena / physiology*
  • Computer Simulation*
  • Humans
  • Models, Biological*
  • Pacinian Corpuscles / physiology*
  • Skin
  • Touch / physiology