Symmetry breaking on density in escaping ants: experiment and alarm pheromone model

PLoS One. 2014 Dec 31;9(12):e114517. doi: 10.1371/journal.pone.0114517. eCollection 2014.

Abstract

The symmetry breaking observed in nature is fascinating. This symmetry breaking is observed in both human crowds and ant colonies. In such cases, when escaping from a closed space with two symmetrically located exits, one exit is used more often than the other. Group size and density have been reported as having no significant impact on symmetry breaking, and the alignment rule has been used to model symmetry breaking. Density usually plays important roles in collective behavior. However, density is not well-studied in symmetry breaking, which forms the major basis of this paper. The experiment described in this paper on an ant colony displays an increase then decrease of symmetry breaking versus ant density. This result suggests that a Vicsek-like model with an alignment rule may not be the correct model for escaping ants. Based on biological facts that ants use pheromones to communicate, rather than seeing how other individuals move, we propose a simple yet effective alarm pheromone model. The model results agree well with the experimental outcomes. As a measure, this paper redefines symmetry breaking as the collective asymmetry by deducing the random fluctuations. This research indicates that ants deposit and respond to the alarm pheromone, and the accumulation of this biased information sharing leads to symmetry breaking, which suggests true fundamental rules of collective escape behavior in ants.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Ants / drug effects*
  • Ants / physiology
  • Escape Reaction / drug effects*
  • Models, Biological*
  • Pheromones / pharmacology*

Substances

  • Pheromones

Grants and funding

This research is supported by China National Natural Science Foundation grants 61074116, 61374165 and 31261160495, as well as the Fundamental Research Funds for the Central Universities of China. This work was also supported by BNU State Key Laboratory of ESPRE grant 2012-TDZY-21. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.