California dragonfly and damselfly (Odonata) database: temporal and spatial distribution of species records collected over the past century

Zookeys. 2015 Feb 16:(482):67-89. doi: 10.3897/zookeys.482.8453. eCollection 2015.

Abstract

The recently completed Odonata database for California consists of specimen records from the major entomology collections of the state, large Odonata collections outside of the state, previous literature, historical and recent field surveys, and from enthusiast group observations. The database includes 32,025 total records and 19,000 unique records for 106 species of dragonflies and damselflies, with records spanning 1879-2013. Records have been geographically referenced using the point-radius method to assign coordinates and an uncertainty radius to specimen locations. In addition to describing techniques used in data acquisition, georeferencing, and quality control, we present assessments of the temporal, spatial, and taxonomic distribution of records. We use this information to identify biases in the data, and to determine changes in species prevalence, latitudinal ranges, and elevation ranges when comparing records before 1976 and after 1979. The average latitude of where records occurred increased by 78 km over these time periods. While average elevation did not change significantly, the average minimum elevation across species declined by 108 m. Odonata distribution may be generally shifting northwards as temperature warms and to lower minimum elevations in response to increased summer water availability in low-elevation agricultural regions. The unexpected decline in elevation may also be partially the result of bias in recent collections towards centers of human population, which tend to occur at lower elevations. This study emphasizes the need to address temporal, spatial, and taxonomic biases in museum and observational records in order to produce reliable conclusions from such data.

Keywords: Museum specimens; bias; change in distribution; digital catalog; observational records; species richness.