Ancestral gene synteny reconstruction improves extant species scaffolding

BMC Genomics. 2015;16 Suppl 10(Suppl 10):S11. doi: 10.1186/1471-2164-16-S10-S11. Epub 2015 Oct 2.

Abstract

We exploit the methodological similarity between ancestral genome reconstruction and extant genome scaffolding. We present a method, called ARt-DeCo that constructs neighborhood relationships between genes or contigs, in both ancestral and extant genomes, in a phylogenetic context. It is able to handle dozens of complete genomes, including genes with complex histories, by using gene phylogenies reconciled with a species tree, that is, annotated with speciation, duplication and loss events. Reconstructed ancestral or extant synteny comes with a support computed from an exhaustive exploration of the solution space. We compare our method with a previously published one that follows the same goal on a small number of genomes with universal unicopy genes. Then we test it on the whole Ensembl database, by proposing partial ancestral genome structures, as well as a more complete scaffolding for many partially assembled genomes on 69 eukaryote species. We carefully analyze a couple of extant adjacencies proposed by our method, and show that they are indeed real links in the extant genomes, that were missing in the current assembly. On a reduced data set of 39 eutherian mammals, we estimate the precision and sensitivity of ARt-DeCo by simulating a fragmentation in some well assembled genomes, and measure how many adjacencies are recovered. We find a very high precision, while the sensitivity depends on the quality of the data and on the proximity of closely related genomes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Animals
  • Evolution, Molecular*
  • Gene Duplication
  • Genome*
  • Mammals / genetics*
  • Phylogeny*
  • Synteny / genetics