Expression and modulation of K+ currents in oligodendrocytes: possible role in myelinogenesis

Dev Neurosci. 1989;11(2):118-31. doi: 10.1159/000111893.

Abstract

We have used whole-cell and single-channel recording techniques to investigate the electrophysiological properties of cultured ovine oligodendrocytes (OLGs). Our studies have led to the following conclusions. (1) Cultured mature OLGs express a variety of voltage-dependent K+ conductances including an outward current that consists of a transient component and a steady-state component, as well as an inwardly rectifying K+ current. (2) These conductances are expressed sequentially as a function of development in culture. The inwardly rectifying K+ current appears later than the outward current. (3) Although process extension may influence the expression of the ion channels, the majority of the K+ channels are located in the soma of OLGs, probably concentrated in the basal plasma membrane. (4) Finally, the activation of K+ channels in OLGs can be inhibited by two distinct second messengers, cAMP acting through protein kinase A and diacylglycerol acting through protein kinase C, the effects of which perhaps converge at the level of a common phosphorylated enzyme or regulatory protein. Both cAMP and diacylglycerol have been implicated as factors important in controlling the induction of a myelinogenic metabolism associated with OLG substratum attachment. Thus, membrane ion channels may provide an important intermediate step linking cellular substratum attachment to the eventual induction of myelinogenesis.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Cells, Cultured
  • Membrane Potentials
  • Myelin Sheath / metabolism*
  • Neuroglia / physiology*
  • Oligodendroglia / physiology*
  • Potassium Channels / physiology*
  • Sheep

Substances

  • Potassium Channels