Effects of GSM-like radiofrequency irradiation during the oogenesis and spermiogenesis of Xenopus laevis

Ecotoxicol Environ Saf. 2016 Jul:129:137-44. doi: 10.1016/j.ecoenv.2016.03.015. Epub 2016 Mar 24.

Abstract

We aimed to evaluate the effect of GSM-like radiofrequency electromagnetic radiation (RF-EMR) on the oogenesis, and spermiogenesis of Xenopus laevis, and so the development of the embryos obtained from Normal Females+Normal Males (i.e. "N(F)+N(M)"); Normal Females+RF-exposed Males (i.e. "N(F)+RF(M)"); RF-exposed Female+Normal Male (i.e. "RF(F)+N(M)"); and RF-exposed Female+RF-exposed Male (i.e. "RF(F)+RF(M)". Various, assessments were performed to determine potential teratogenic effects and mortality, body growth and behavior on first generation embryos. After exposing adults frogs of both sexes to 900MHz RF-EMR (at 1.0W/kg) for 8h a day over a 5-week period, the embryos' specific energy absorption rate (SAR) was calculated. In our present study (control group; 2.2% abnormal, 0.0% dead); with the N(F)+RF(M) combination, the long-term exposure of adult males to GSM-like radiation at 900MHz (RF: 2W) for 5 week/8h/day resulted in normal, abnormal and dead embryo ratios of 88.3%, 3.3% and 8.3%, respectively (p<0.001). In the RF(F)+N(M) combination, long-term exposure (5 week/8h/day) of adult females led to normal, abnormal and dead embryo ratios of 76.7%, 11.7%, and 11.7%, respectively (p<0.001). And in the RF(F)+RF(M) combination, long-term exposure (5 week/8h/day) of both adult males and females led to normal, abnormal and dead embryo ratios of 73.3%, 11.7%, and 15%, respectively (p<0.001). With the exception RF(F)+RF(M) group (p<0.001), no significant changes were observed on body growth (lengths) in comparison to the control group. It was also observed that the offspring of female adult Xenopus exposed to RF-EMR during oogenesis exhibited a more aggressive behavior compared to the control group. Cell phones radiation can thus lead to detrimental effects in humans' male and female reproductive cells.

Keywords: Amphibian; FETAX; Oogenesis; RF-EMR; Spermiogenesis; Teratogenesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Female
  • Male
  • Oogenesis / drug effects*
  • Oogenesis / radiation effects
  • Radio Waves / adverse effects*
  • Spermatogenesis / radiation effects*
  • Xenopus laevis / physiology*