Oxidation of K(+) Channels in Aging and Neurodegeneration

Aging Dis. 2016 Mar 15;7(2):130-5. doi: 10.14336/AD.2015.0901. eCollection 2016 Mar.

Abstract

Reversible regulation of proteins by reactive oxygen species (ROS) is an important mechanism of neuronal plasticity. In particular, ROS have been shown to act as modulatory molecules of ion channels-which are key to neuronal excitability-in several physiological processes. However ROS are also fundamental contributors to aging vulnerability. When the level of excess ROS increases in the cell during aging, DNA is damaged, proteins are oxidized, lipids are degraded and more ROS are produced, all culminating in significant cell injury. From this arose the idea that oxidation of ion channels by ROS is one of the culprits for neuronal aging. Aging-dependent oxidative modification of voltage-gated potassium (K(+)) channels was initially demonstrated in the nematode Caenorhabditis elegans and more recently in the mammalian brain. Specifically, oxidation of the delayed rectifier KCNB1 (Kv2.1) and of Ca(2+)- and voltage sensitive K(+) channels have been established suggesting that their redox sensitivity contributes to altered excitability, progression of healthy aging and of neurodegenerative disease. Here I discuss the implications that oxidation of K(+) channels by ROS may have for normal aging, as well as for neurodegenerative disease.

Keywords: K+ channel; ROS; aging; endothelial cells; neurodegenerative disease; neuron; smooth muscle.

Publication types

  • Review