The chick's marginal zone and primitive streak formation. II. Quantification of the marginal zone's potencies--temporal and spatial aspects

Dev Biol. 1989 Jul;134(1):215-21. doi: 10.1016/0012-1606(89)90091-2.

Abstract

When a posterior fragment of the chick's marginal zone (PM) was exchanged with equal sized lateral marginal zone fragment (LM), of the same blastoderm, its capacity to initiate an ectopic primitive streak (PS) was found to be both size and stage dependent. Good correlation was demonstrated between the areas of PM fragments and the number of cells they contained. In stage X blastoderms, PM fragments containing less than 1200 cells were incapable of initiating an ectopic PS. Transplanted PMs containing between 1200 and 1500 cells initiated a lateral ectopic PS in 50% of the cases, while in the other 50% a posterior PS developed from the original posterior side. PMs containing 1500 cells or more in all cases initiating an ectopic PS and inhibited the formation of a posterior PS. At stage XI, laterally transplanted PMs containing less than 1800 cells were not effective. Stage XI PMs containing 1800-2300 cells in some cases succeeded in initiating a lateral ectopic PS, in addition to the posterior one. Stage XI PMs containing 2300 cells or more invariably promoted the development of an ectopic PS, but were unable to suppress the formation of a posterior PS, so that two PSs developed in the same blastoderm, one posterior and one ectopic. When a stage XI PM fragment was laterally transplanted into a younger, stage X blastoderm, the minimal effective cell number needed to initiate an ectopic PS increased to at least 3000 cells, again without inhibiting the formation of a posterior PS. The inductive potential of a stage X PM is therefore at least twice that of a stage XI PM. The marginal zone belt of stage X blastoderms was checked for the decrease in its developmental potential from the posterior to the lateral side by evaluating its effect on the developmental expression of two competing stage X PMs, one located posteriorly and the other inserted laterally. The developmental expression of the laterally inserted PM was consistently inferior to that of the posterior PM. The developmental expression of each PM was not related to absolute size, but depended on the size ratio of lateral PM/posterior PM. When the ratio was 1.2 or less, only posterior PSs developed. When the ratio was 1.3-1.4, three different results were encountered: (1) only a posterior PS, (2) posterior plus lateral, and (3) only lateral PS. When the ratio was 1.5 or more, only a lateral PS developed, which suppressed the posterior PS.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Blastoderm / physiology*
  • Blastoderm / transplantation
  • Blastoderm / ultrastructure
  • Chick Embryo
  • Time Factors