The impact of nitrogen oxides concentration decreases on ozone trends in the USA

Air Qual Atmos Health. 2015 Jun;8(3):283-292. doi: 10.1007/s11869-014-0279-2.

Abstract

Ozone (O3) has harmful effects on human health and ecosystems. In the USA, significant reductions of O3 precursors-nitrogen oxides (NOx) and volatile organic compounds (VOCs)-have not yielded proportionate decreases in O3. NOx is a major precursor of O3 as well as a quencher of O3 through NOx titration, which is especially important during the night and wintertime. In this study, we investigated the potential dual impact of NOx concentration decreases on recent O3 trends by season and time of day. We analyzed hourly O3 and NOx measurement data between 1994 and 2010 in the continental USA. Nationally, hourly O3 concentrations decreased by as much as -0.38 ppb/year with a standard error of 0.05 ppb/year during the warm season midday, but increased by as much as +0.30±0.04 ppb/year during the cold season. High O3 concentrations (≥75th percentile) during the warm season decreased significantly, however, there were notable increases in the cold season as well as warm season nighttime; we found that these increases were largely attributable to NOx decreases as less O3 is quenched. These O3 increases, or "penalties", related to NOx reductions remained robust at a wide range of O3 concentrations (5th to 99th percentile), and even after accounting for VOC reductions and meteorological parameters, including temperature, wind speed, and water vapor pressure. In addition, we observed O3 penalties across rural, suburban, and urban areas. Nonetheless, peak O3 concentrations (99.9th percentile) were mitigated by NOx reductions. In addition, there was some suggestive evidence that VOC reductions have been more effective in reducing O3.

Keywords: Air pollution; Nitrogen oxides; Ozone; Trends.