Kin selection and the evolution of plant reproductive traits

Proc Biol Sci. 2016 Nov 16;283(1842):20160789. doi: 10.1098/rspb.2016.0789.

Abstract

Competition among developing seeds and sibling rivalry within multiovulated ovaries can be deleterious for both the maternal parent and the siblings. Increased genetic relatedness of seeds within the ovary may foster kin selection and reduce the deleterious consequences of sibling competition. The pollen parent may also be selected for siring all progeny within a fruit. I propose a series of hypotheses to explain the evolution of a number of reproductive traits in angiosperms in the context of kin selection and sibling rivalry within the ovaries of angiosperms. I present evidence to show that a single-pollen parent, indeed, often sires seeds within multiovulated ovaries. Various types of pollen aggregations and transfer of such pollen masses to the stigmas of flowers by specialized pollinators make this increased genetic relatedness possible. An alternative mode to reduce sibling rivalry may be the reduction of ovule number to one, an evolutionary trend that has independently occurred many times in flowering plants. Finally, I build on previously established correlations to predict two sets of correlations among reproductive traits. In the first case, large showy flowers, transfer of pollen en masse by specialized pollinators, and multiovulated ovaries and multisided fruits seem to be correlated. In the second case, the previously established correlations among small and inconspicuous flowers, pollination by wind, water or generalist insects, flowers and fruits with few or single ovules and seeds, respectively, may also include monoecy or dioecy. Although correlations among many of these traits have been established in the past, I invoke kin selection and sibling competition to explain the evolution of correlated traits as two distinct evolutionary pathways in angiosperms.

Keywords: kin selection; placentation; pollen aggregations; pollination modes; seed number.

Publication types

  • Review

MeSH terms

  • Biological Evolution*
  • Flowers / genetics
  • Phenotype
  • Plant Physiological Phenomena*
  • Plants / genetics*
  • Pollen / genetics
  • Pollination*
  • Reproduction
  • Seeds / genetics*