Antifouling biocides in German marinas: Exposure assessment and calculation of national consumption and emission

Integr Environ Assess Manag. 2017 Sep;13(5):892-905. doi: 10.1002/ieam.1896. Epub 2017 Mar 11.

Abstract

The authorization of biocidal antifouling products for leisure boats is the subject of the European Union Biocides Regulation 528/2012. National specifics may be regarded by the member states in their assessment of environmental risks. The aim of this survey was to collect corresponding data and to create a database for the environmental risk assessment of antifouling active substances in German surface waters. Water concentrations of current antifouling active substances and selected breakdown products were measured in a single-sampling campaign covering 50 marinas at inland and coastal areas. Increased levels were found for Zn, Cu, and cybutryne. For the latter, the maximum allowable concentration according to Directive 2013/39/EU was exceeded at 5 marinas. For Cu, local environmental quality standards were exceeded at 10 marinas. Base data on the total boat inventory in Germany were lacking until now. For that reason, a nationwide survey of mooring berths was conducted by use of aerial photos. About 206 000 mooring berths obviously used by boats with a potential antifouling application were counted. The blind spot of very small marinas was estimated at 20 000 berths. Seventy-one percent of berths were located at freshwater sites, illustrating the importance of navigable inland waterways for leisure boat activities and underlining the need for a customized exposure assessment in these areas. Moreover, the national consumption of all antifouling products for leisure boats was calculated. The total amount of 794 tonnes/annum (t/a) consisted of 179 t/a of inorganic Cu compounds, 19 t/a of organic cobiocides, and 49.5 t/a of Zn. With regard to weight proportion, 141 t/a Cu and 40 t/a Zn were consumed. Assuming an emission ratio of 50% during service life, 70.5 t/a of Cu amounted to 15% of all external sources for Cu release to German surface waters. These figures highlight the need for mitigation measures. Integr Environ Assess Manag 2017;13:892-905. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

Keywords: Analytical screening; Antifouling active substances on leisure boats; Antifouling product consumption; Biocidal emission.

MeSH terms

  • Disinfectants / analysis*
  • Germany
  • Risk Assessment
  • Ships / statistics & numerical data*
  • Water Pollutants, Chemical / analysis*
  • Water Pollution, Chemical / statistics & numerical data*

Substances

  • Disinfectants
  • Water Pollutants, Chemical