Syndecan-1 is a novel molecular marker for triple negative inflammatory breast cancer and modulates the cancer stem cell phenotype via the IL-6/STAT3, Notch and EGFR signaling pathways

Mol Cancer. 2017 Mar 7;16(1):57. doi: 10.1186/s12943-017-0621-z.

Abstract

Background: Inflammatory breast cancer (IBC), a particularly aggressive form of breast cancer, is characterized by cancer stem cell (CSC) phenotype. Due to a lack of targeted therapies, the identification of molecular markers of IBC is of major importance. The heparan sulfate proteoglycan Syndecan-1 acts as a coreceptor for growth factors and chemokines, modulating inflammation, tumor progression, and cancer stemness, thus it may emerge as a molecular marker for IBC.

Methods: We characterized expression of Syndecan-1 and the CSC marker CD44, Notch-1 & -3 and EGFR in carcinoma tissues of triple negative IBC (n = 13) and non-IBC (n = 17) patients using qPCR and immunohistochemistry. Impact of siRNA-mediated Syndecan-1 knockdown on the CSC phenotype of the human triple negative IBC cell line SUM-149 and HER-2-overexpressing non-IBC SKBR3 cells employing qPCR, flow cytometry, Western blotting, secretome profiling and Notch pharmacological inhibition experiments. Data were statistically analyzed using Student's t-test/Mann-Whitney U-test or one-way ANOVA followed by Tukey's multiple comparison tests.

Results: Our data indicate upregulation and a significant positive correlation of Syndecan-1 with CD44 protein, and Notch-1 & -3 and EGFR mRNA in IBC vs non-IBC. ALDH1 activity and the CD44(+)CD24(-/low) subset as readout of a CSC phenotype were reduced upon Syndecan-1 knockdown. Functionally, Syndecan-1 silencing significantly reduced 3D spheroid and colony formation. Intriguingly, qPCR results indicate downregulation of the IL-6, IL-8, CCL20, gp130 and EGFR mRNA upon Syndecan-1 suppression in both cell lines. Moreover, Syndecan-1 silencing significantly downregulated Notch-1, -3, -4 and Hey-1 in SUM-149 cells, and downregulated only Notch-3 and Gli-1 mRNA in SKBR3 cells. Secretome profiling unveiled reduced IL-6, IL-8, GRO-alpha and GRO a/b/g cytokines in conditioned media of Syndecan-1 knockdown SUM-149 cells compared to controls. The constitutively activated STAT3 and NFκB, and expression of gp130, Notch-1 & -2, and EGFR proteins were suppressed upon Syndecan-1 ablation. Mechanistically, gamma-secretase inhibition experiments suggested that Syndecan-1 may regulate the expression of IL-6, IL-8, gp130, Hey-1, EGFR and p-Akt via Notch signaling.

Conclusions: Syndecan-1 acts as a novel tissue biomarker and a modulator of CSC phenotype of triple negative IBC via the IL-6/STAT3, Notch and EGFR signaling pathways, thus emerging as a promising therapeutic target for IBC.

Keywords: Cancer stem cell; EGFR; IL-6/STAT3; Inflammatory breast cancer; Notch; Proteoglycan; Syndecan-1.

MeSH terms

  • Adult
  • Biomarkers
  • Cell Line, Tumor
  • ErbB Receptors / metabolism
  • Female
  • Gene Expression
  • Gene Knockdown Techniques
  • Gene Silencing
  • Humans
  • Hyaluronan Receptors / metabolism
  • Inflammatory Breast Neoplasms / genetics
  • Inflammatory Breast Neoplasms / metabolism*
  • Inflammatory Breast Neoplasms / pathology
  • Interleukin-6 / metabolism
  • Middle Aged
  • NF-kappa B / metabolism
  • Neoplasm Grading
  • Neoplasm Metastasis
  • Neoplastic Stem Cells / metabolism*
  • Neoplastic Stem Cells / pathology
  • Phenotype
  • Proteome
  • Proteomics / methods
  • Receptors, Notch / metabolism
  • STAT3 Transcription Factor / metabolism
  • Signal Transduction*
  • Syndecan-1 / genetics
  • Syndecan-1 / metabolism*
  • Triple Negative Breast Neoplasms / genetics
  • Triple Negative Breast Neoplasms / metabolism*
  • Triple Negative Breast Neoplasms / pathology

Substances

  • Biomarkers
  • CD44 protein, human
  • Hyaluronan Receptors
  • Interleukin-6
  • NF-kappa B
  • Proteome
  • Receptors, Notch
  • STAT3 Transcription Factor
  • Syndecan-1
  • ErbB Receptors