Global perturbation of organic carbon cycling by river damming

Nat Commun. 2017 May 17:8:15347. doi: 10.1038/ncomms15347.

Abstract

The damming of rivers represents one of the most far-reaching human modifications of the flows of water and associated matter from land to sea. Dam reservoirs are hotspots of sediment accumulation, primary productivity (P) and carbon mineralization (R) along the river continuum. Here we show that for the period 1970-2030, global carbon mineralization in reservoirs exceeds carbon fixation (P<R); the global P/R ratio, however, varies significantly, from 0.20 to 0.58 because of the changing age distribution of dams. We further estimate that at the start of the twenty-first century, in-reservoir burial plus mineralization eliminated 4.0±0.9 Tmol per year (48±11 Tg C per year) or 13% of total organic carbon (OC) carried by rivers to the oceans. Because of the ongoing boom in dam building, in particular in emerging economies, this value could rise to 6.9±1.5 Tmol per year (83±18 Tg C per year) or 19% by 2030.

Publication types

  • Research Support, Non-U.S. Gov't