EVOLUTIONARY GENETICS OF TWO SIBLING SPECIES, DROSOPHILA SIMULANS AND D. SECHELLIA

Evolution. 1986 Jul;40(4):673-691. doi: 10.1111/j.1558-5646.1986.tb00530.x.

Abstract

Drosophila simulans and D. sechellia are sibling species, the former cosmopolitan and the latter restricted to the Seychelles Islands. We used classical genetic analysis to measure the numbers and effects of genes responsible for reproductive isolation and morphological differences in male genitalia between these species. At least five loci are responsible for male sterility in hybrids, with the strongest effects produced by at least two genes on the X chromosome. At least three (and probably four) loci are responsible for the interspecific difference in the size of the posterior process of the male genital arch. These genetic results, as well as the pattern of morphological divergence between the species, show several parallels with the divergence between D. simulans and its other island relative, D. mauritiana. We also present the DNA sequence of a 4.5 kilobase region containing the alcohol dehydrogenase (Adh) locus of D. sechellia, and combine this with previous data to reconstruct the phylogenies of the three species and their more distant relative D. melanogaster. Both D. mauritiana and D. sechellia are very closely related to D. simulans. Although most phylogenies show the two island species to be independent offshoots of the D. simulans lineage (with D. sechellia the more recent), the branch points are too close to make this conclusion unambiguous. The genetic and evolutionary parallels between the simulans/mauritiana and the simulans/sechellia divergences may therefore represent either a striking evolutionary convergence or a close common ancestry of the island species. A comparison of Adh alleles within species shows that the divergence among them may be almost as large as among alleles from different species. We conclude that many of the nucleotide differences among these species actually represent polymorphisms within common ancestors. It may be difficult to build accurate phylogenies using only a single DNA sequence from each species.