Autoregulation of human retinal blood flow. An investigation with laser Doppler velocimetry

Invest Ophthalmol Vis Sci. 1986 Dec;27(12):1706-12.

Abstract

The effect of acute changes in mean retinal perfusion pressure, P (2/3 of mean brachial artery blood pressure minus IOP), on retinal volumetric blood flow rate, Q, was investigated in normal volunteers. Changes in Q were determined from Q = k X Vmax X D2, where Vmax is the center line red blood cell velocity measured from temporal veins by laser Doppler velocimetry, D is the vessel diameter obtained by monochromatic fundus photography, and k is a constant of proportionality. A suction cup was used to induce step changes in IOP and, consequently, in P. The magnitude of the steps ranged from 10-32 mmHg. During the first 30 sec after a step decrease in P, Vmax and Q were significantly smaller than at rest by an amount proportional to the decrease in P. Thereafter, Vmax and Q increased markedly towards their values at rest, although P changed comparatively little during this period of time. Time constant of the corresponding decrease in vascular resistance, R(t) = P(t)/Q(t), was approximately 45 sec. There was no significant change in D during elevated IOP. Removal of the cup induced an immediate step increase in P, Vmax, D, Q, and R. Thereafter, Vmax, D, Q, and R returned to their values at rest (time constant of the change in R was about 30 sec), while P remained nearly constant. The rapid change in vascular resistance following a step decrease and increase in P can be attributed to an active process that attempts to maintain blood flow close to normal, in spite of changes in perfusion pressure (autoregulation).(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Homeostasis*
  • Humans
  • Intraocular Pressure
  • Middle Aged
  • Regional Blood Flow
  • Retinal Vessels / physiology*
  • Rheology*
  • Vascular Resistance